ArtifactBuilder#

class furiosa_llm.artifact.ArtifactBuilder(model_id_or_path: str, devices: str, name: str = '', *, tensor_parallel_size: int = 4, pipeline_parallel_size: int = 1, data_parallel_size: int | None = None, prefill_buckets: Sequence[Tuple[int, int]] = [], decode_buckets: Sequence[Tuple[int, int]] = [], max_seq_len_to_capture: int = 2048, num_hidden_layers: int | None = None, seed_for_random_weight: int | None = None, calculate_logit_only_for_last_token: bool | None = None, quantize_artifact_path: PathLike | None = None, compiler_config_overrides: Mapping | None = None, do_decompositions_for_model_rewrite: bool = False, use_blockwise_compile: bool = True, num_blocks_per_supertask: int = 1, num_blocks_per_pp_stage: Sequence[int] | None = None, embed_all_constants_into_graph: bool = False, add_prefill_last_block_slice: bool = False, kv_cache_sharing_across_beams_config: KvCacheSharingAcrossBeamsConfig | None = None, paged_attention_num_blocks: int | None = None, paged_attention_block_size: int = 1, default_scheduler_config: SchedulerConfig = SchedulerConfig(npu_queue_limit=2, max_processing_samples=65536, spare_blocks_ratio=0.2, is_offline=False, prefill_chunk_size=None), **kwargs)[source]#

Bases: object

The artifact builder to use in the Furiosa LLM.

Parameters:
  • model_id_or_path – The Huggingface model id or a local path. This corresponds to pretrained_model_name_or_path in HuggingFace Transformers.

  • devices – The devices to run the model. It can be a single device or a list of devices. Each device can be either “npu:X” or “npu:X:*” where X is a specific device index. If not given, build the artifact based on using just one device.

  • name – The name of the artifact to build.

  • tensor_parallel_size – The number of PEs for each tensor parallelism group. The default is 4.

  • pipeline_parallel_size – The number of pipeline stages for pipeline parallelism. The default is 1, which means no pipeline parallelism.

  • data_parallel_size – The size of the data parallelism group. If not given, it will be inferred from total avaialble PEs and other parallelism degrees.

  • prefill_buckets – Specify the bucket size for prefill

  • decode_buckets – Specify the bucket size for decode

  • max_seq_len_to_capture – Maximum sequence length covered by LLM engine. Sequence with larger context than this will not be covered. If no bucket is explicitly specified, a single batch bucket with a context length of this value is created.

  • num_hidden_layers – Number of hidden layers in the Transformer encoder.

  • seed_for_random_weight – The seed to initialize the random number generator for creating random weight.

  • calculate_logit_only_for_last_token – Whether the model has last block slice optimization applied.

  • quantize_artifact_path – Specifies the path where quantization artifacts generated by the furiosa-model-compressor are saved.

  • compiler_config_overrides – Overrides for the compiler config. This is a dictionary that includes the configuration for the compiler.

  • do_decompositions_for_model_rewrite – Whether to decompose some ops to describe various parallelism strategies with mppp config. When the value is True, mppp config that matches with the decomposed FX graph should be given.

  • use_blockwise_compile – If True, each task will be compiled in the unit of transformer block, and compilation result for transformer block is generated once and reused. The default is True.

  • num_blocks_per_supertask – The number of transformer blocks that will be merged into one supertask. This option is valid only when use_blockwise_compile=True. The default is 1.

  • num_blocks_per_pp_stage – The number of transformers blocks per each pipeline parallelism stage. If not given, transformer blocks will be distributed equally.

  • embed_all_constants_into_graph – Whether to embed constant tensors into graph or make them as input of the graph and save them as separate files. The default is False.

  • add_prefill_last_block_slice – Apply last block slice optimization during the prefill stage.

  • kv_cache_sharing_across_beams_config – Configuration for sharing kv cache across beams. This argument must be given if and only if the model is optimized to share kv cache across beams. If this argument is given, decode phase buckets with batch size of batch_size * kv_cache_sharing_across_beams_config.beam_width will be created.

  • paged_attention_num_blocks – The maximum number of blocks that each k/v storage per layer can store. This argument must be given if model uses paged attention. This argument must be given if model uses paged attention.

  • paged_attention_block_size – The maximum number of tokens that can be stored in a single paged attention block. This argument must be given if model uses paged attention.

  • default_scheduler_config – Default configuration for the scheduler, allowing to maximum number of tasks which can be queued to HW, maximum number of samples that can be processed by the scheduler, and ratio of spare blocks that are reserved by scheduler.

build(save_dir: str | PathLike, *, num_pipeline_builder_workers: int = 1, num_compile_workers: int = 1, cache_dir: PathLike | None = PosixPath('/home/runner/.cache/furiosa/llm'), param_file_path: PathLike | None = None, param_saved_format: Literal['safetensors', 'pt'] = 'safetensors', _cleanup: bool = True, **kwargs)[source]#

Build the artifacts for given model configurations.

Parameters:
  • save_dir – The path to save the artifacts. With artifacts, you can create LLM without quantizing or compiling the model again.

  • num_pipeline_builder_workers – The number of workers used for building pipelines (except for compilation). The default is 1 (no parallelism). Setting this value larger than 1 reduces pipeline building time, especially for large models, but requires much more memory.

  • num_compile_workers – The number of workers used for compilation. The default is 1 (no parallelism).

  • cache_dir – The cache directory for all generated files for this LLM instance. When its value is None, caching is disabled. The default is “$HOME/.cache/furiosa/llm”.

  • param_file_path – The path to the parameter file to use for pipeline generation. If not specified, the parameters will be saved in a temporary file which will be deleted when LLM is destroyed.

  • param_saved_format – The format of the parameter file. Only possible value is “safetensors” now. The default is “safetensors”.

Artifact#

class furiosa_llm.artifact.Artifact(*, metadata: ArtifactMetadata, devices: str, generator_config: GeneratorConfig, hf_config: Dict[str, Any], model_metadata: ModelMetadata, model_rewriting_config: ModelRewritingConfig, parallel_config: ParallelConfig, pipelines: List[Dict[str, Any]] = [])[source]#

Bases: BaseModel

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'devices': FieldInfo(annotation=str, required=True), 'generator_config': FieldInfo(annotation=GeneratorConfig, required=True), 'hf_config': FieldInfo(annotation=Dict[str, Any], required=True), 'metadata': FieldInfo(annotation=ArtifactMetadata, required=True), 'model_metadata': FieldInfo(annotation=ModelMetadata, required=True), 'model_rewriting_config': FieldInfo(annotation=ModelRewritingConfig, required=True), 'parallel_config': FieldInfo(annotation=ParallelConfig, required=True), 'pipelines': FieldInfo(annotation=List[Dict[str, Any]], required=False, default=[])}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

ArtifactMetadata#

class furiosa_llm.artifact.ArtifactMetadata(*, artifact_id: str, name: str, timestamp: int, version: ArtifactVersion)[source]#

Bases: BaseModel

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'artifact_id': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True), 'timestamp': FieldInfo(annotation=int, required=True), 'version': FieldInfo(annotation=ArtifactVersion, required=True)}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.

ArtifactVersion#

class furiosa_llm.artifact.ArtifactVersion(*, furiosa_llm: str, furiosa_compiler: str)[source]#

Bases: BaseModel

model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}#

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[Dict[str, FieldInfo]] = {'furiosa_compiler': FieldInfo(annotation=str, required=True), 'furiosa_llm': FieldInfo(annotation=str, required=True)}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

This replaces Model.__fields__ from Pydantic V1.